Skip to main content

Literatur

 


 

Wir belegen jede Aussage in Ihrem Bericht mit einer Studie. Dadurch können Sie sich sicher sein, dass jede Erkenntnis über Ihr Mikrobiom evidenzbasiert ist. Damit Sie sich nicht durch jede Studie lesen müssen, machen wir das für Sie. Unter "Für Sie gelesen" fassen wir die wichtigsten Botschaften einer jeden Studie für Sie zusammen.

 

Mikrobielle Zusammensetzung

  1. Martino C, Dilmore AH, Burcham ZM, Metcalf JL, Jeste D, Knight R. Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol. Published online July 29, 2022:1-14. doi:10.1038/s41579-022-00768-z
  2. Rothschild D, Weissbrod O, Barkan E, et al. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210-215. doi:10.1038/nature25973
  3. Bergström A, Skov TH, Bahl MI, et al. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl Environ Microbiol. 2014;80(9):2889-2900. doi:10.1128/AEM.00342-14
  4. Dysbiosis: from fiction to function | American Journal of Physiology-Gastrointestinal and Liver Physiology. Accessed September 9, 2022. https://journals.physiology.org/doi/full/10.1152/ajpgi.00230.2019
  5. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55- 71. doi:10.1038/s41579-020-0433-9
  6. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006;444(7122):1022-1023. doi:10.1038/4441022a
  7. Costea PI, Hildebrand F, Arumugam M, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3(1):8-16. doi:10.1038/s41564-017-0072-8
  8. Clemente JC, Pehrsson EC, Blaser MJ, et al. The microbiome of uncontacted Amerindians. Science Advances. 2015;1(3):e1500183. doi:10.1126/sciadv.1500183
  9. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541-546. doi:10.1038/nature12506
  10. Heintz-Buschart A, Wilmes P. Human Gut Microbiome: Function Matters. Trends in Microbiology. 2018;26(7):563-574. doi:10.1016/j.tim.2017.11.002
  11. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489(7415):220-230. doi:10.1038/nature11550
  12. Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585-588. doi:10.1038/nature12480
  13. Donaldson GP, Lee SM, Mazmanian SK. Gut biogeography of the bacterial microbiota. Nat Rev Microbiol. 2016;14(1):20-32. doi:10.1038/nrmicro3552
  14. Litvak Y, Byndloss MX, Tsolis RM, Bäumler AJ. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Current Opinion in Microbiology. 2017;39:1-6. doi:10.1016/j.mib.2017.07.003
  15. Sankararaman S, Noriega K, Velayuthan S, Sferra T, Martindale R. Gut Microbiome and Its Impact on Obesity and Obesity-Related Disorders. Curr Gastroenterol Rep. 2023;25(2):31-44. doi:10.1007/s11894-022-00859-0
  16. Binda C, Lopetuso LR, Rizzatti G, Gibiino G, Cennamo V, Gasbarrini A. Actinobacteria: A relevant minority for the maintenance of gut homeostasis. Digestive and Liver Disease. 2018;50(5):421-428. doi:10.1016/j.dld.2018.02.012
  17. Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol. 2022;19(10):625-637. doi:10.1038/s41575-022-00631-9
  18. Di Pierro F. Gut Microbiota Parameters Potentially Useful in Clinical Perspective. Microorganisms. 2021;9(11):2402. doi:10.3390/microorganisms9112402
  19. Krajmalnik-Brown R, Ilhan ZE, Kang DW, DiBaise JK. Effects of Gut Microbes on Nutrient Absorption and Energy Regulation. Nutrition in Clinical Practice. 2012;27(2):201-214. doi:10.1177/0884533611436116
  20. Sze MA, Schloss PD. Looking for a Signal in the Noise: Revisiting Obesity and the Microbiome. mBio. 2016;7(4):e01018-16. doi:10.1128/mBio.01018-16
  21. Magne F, Gotteland M, Gauthier L, et al. The Firmicutes/Bacteroidetes Ratio: A Relevant Marker of Gut Dysbiosis in Obese Patients? Nutrients. 2020;12(5):1474. doi:10.3390/nu12051474
  22. Tigchelaar EF, Bonder MJ, Jankipersadsing SA, Fu J, Wijmenga C, Zhernakova A. Gut microbiota composition associated with stool consistency. Gut. 2016;65(3):540-542. doi:10.1136/gutjnl-2015-310328
  23. Procházková N, Falony G, Dragsted LO, Licht TR, Raes J, Roager HM. Advancing human gut microbiota research by considering gut transit time. Gut. 2023;72(1):180-191. doi:10.1136/gutjnl-2022-328166
  24. Bresser LRF, de Goffau MC, Levin E, Nieuwdorp M. Gut Microbiota in Nutrition and Health with a Special Focus on Specific Bacterial Clusters. Cells. 2022;11(19):3091. doi:10.3390/cells11193091
  25. Arumugam M, Raes J, Pelletier E, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-180. doi:10.1038/nature09944
  26. Karlsson FH, Nookaew I, Nielsen J. Metagenomic data utilization and analysis (MEDUSA) and construction of a global gut microbial gene catalogue. PLoS Comput Biol. 2014;10(7):e1003706. doi:10.1371/journal.pcbi.1003706
  27. de Moraes ACF, Fernandes GR, da Silva IT, et al. Enterotype May Drive the Dietary-Associated Cardiometabolic Risk Factors. Frontiers in Cellular and Infection Microbiology. 2017;7. Accessed October 16, 2022. https://www.frontiersin.org/articles/10.3389/fcimb.2017.00047
  28. Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes | Science. Accessed October 26, 2022. https://www.science.org/doi/10.1126/science.1208344?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed

Bakterien

  1. Koh A, Vadder FD, Kovatcheva-Datchary P, Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165(6):1332-1345. doi:10.1016/j.cell.2016.05.041
  2. Krautkramer KA, Fan J, Bäckhed F. Gut microbial metabolites as multi-kingdom intermediates. Nat Rev Microbiol. 2021;19(2):77-94. doi:10.1038/s41579-020-0438-4
  3. The gut microbiota and obesity: from correlation to causality | Nature Reviews Microbiology. Accessed October 24, 2022. https://www.nature.com/articles/nrmicro3089
  4. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Human gut microbes associated with obesity. Nature. 2006;444(7122):1022-1023. doi:10.1038/4441022a
  5. Koutoukidis DA, Jebb SA, Zimmerman M, et al. The association of weight loss with changes in the gut microbiota diversity, composition, and intestinal permeability: a systematic review and meta-analysis. Gut Microbes. 2022;14(1):2020068. doi:10.1080/19490976.2021.2020068
  6. Depommier C, Everard A, Druart C, et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: a proof-of-concept exploratory study. Nat Med. 2019;25(7):1096-1103. doi:10.1038/s41591-019-0495-2
  7. XU Z, JIANG W, HUANG W, LIN Y, CHAN FKL, NG SC. Gut microbiota in patients with obesity and metabolic disorders — a systematic review. Genes & Nutrition. 2022;17(1):2. doi:10.1186/s12263-021-00703-6
  8. Improvements to postprandial glucose control in subjects with type 2 diabetes: a multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation | BMJ Open Diabetes Research & Care. Accessed October 24, 2022. https://drc.bmj.com/content/8/1/e001319
  9. Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol. 2022;19(10):625-637. doi:10.1038/s41575-022-00631-9
  10. Procházková N, Falony G, Dragsted LO, Licht TR, Raes J, Roager HM. Advancing human gut microbiota research by considering gut transit time. Gut. 2023;72(1):180-191. doi:10.1136/gutjnl-2022-328166
  11. Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A. Meta-analysis of the gut microbiome of Parkinson's disease patients suggests alterations linked to intestinal inflammation. Published online August 12, 2020:2020.08.10.20171397. doi:10.1101/2020.08.10.20171397
  12. Goodrich JK, Waters JL, Poole AC, et al. Human genetics shape the gut microbiome. Cell. 2014;159(4):789- 799. doi:10.1016/j.cell.2014.09.053
  13. Stenman L k., Burcelin R, Lahtinen S. Establishing a causal link between gut microbes, body weight gain and glucose metabolism in humans – towards treatment with probiotics. Beneficial Microbes. 2016;7(1):11-22. doi:10.3920/BM2015.0069
  14. Waters JL, Ley RE. The human gut bacteria Christensenellaceae are widespread, heritable, and associated with health. BMC Biol. 2019;17:83. doi:10.1186/s12915-019-0699-4
  15. Bui TPN, de Vos WM. Next-generation therapeutic bacteria for treatment of obesity, diabetes, and other endocrine diseases. Best Practice & Research Clinical Endocrinology & Metabolism</em >. 2021;35(3):101504. doi:10.1016/j.beem.2021.101504
  16. Ganesan K, Chung SK, Vanamala J, Xu B. Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes. International Journal of Molecular Sciences. 2018;19(12):3720. doi:10.3390/ijms19123720
  17. Lenoir M, Martín R, Torres-Maravilla E, et al. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3. Gut Microbes. 2020;12(1):1-16. doi:10.1080/19490976.2020.1826748
  18. Engels C, Ruscheweyh HJ, Beerenwinkel N, Lacroix C, Schwab C. The Common Gut Microbe Eubacterium hallii also Contributes to Intestinal Propionate Formation. Frontiers in Microbiology. 2016;7. Accessed November 20, 2022. https://www.frontiersin.org/articles/10.3389/fmicb.2016.00713
  19. Berg JM, Tymoczko JL, Stryer L. Stryer Biochemie. Springer; 2013. doi:10.1007/978-3-8274-2989-6
  20. Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease. Nat Rev Microbiol. Published online October 17, 2022. doi:10.1038/s41579-022- 00805-x
  21. Grundwissen Immunologie - Christine Schütt, Barbara Bröker - Google Books. Accessed November 28, 2022. https://books.google.de/books/about/Grundwissen_Immunologie.html?id=50UeBAAAQBAJ&redir_esc=y
  22. Saal K von der. Biochemie. Springer-Verlag; 2020.
  23. Sánchez-Pérez S, Comas-Basté O, Duelo A, et al. Intestinal Dysbiosis in Patients with Histamine Intolerance. Nutrients. 2022;14(9):1774. doi:10.3390/nu14091774
  24. De Palma G, Shimbori C, Reed DE, et al. Histamine production by the gut microbiota induces visceral hyperalgesia through histamine 4 receptor signaling in mice. Sci Transl Med. 2022;14(655):eabj1895. doi:10.1126/scitranslmed.abj1895
  25. Hoegenauer C, Hammer HF, Mahnert A, Moissl-Eichinger C. Methanogenic archaea in the human gastrointestinal tract. Nat Rev Gastroenterol Hepatol. 2022;19(12):805-813. doi:10.1038/s41575-022-00673-z
  26. Camara A, Konate S, Tidjani Alou M, et al. Clinical evidence of the role of Methanobrevibacter smithii in severe acute malnutrition. Sci Rep. 2021;11(1):5426. doi:10.1038/s41598-021-84641-8
  27. Stallmach A, Vehreschild MJGT. Mikrobiom: Wissensstand und Perspektiven. Walter de Gruyter GmbH & Co KG; 2016.
  28. Poles MZ, Juhász L, Boros M. Methane and Inflammation - A Review (Fight Fire with Fire). Intensive Care Med Exp. 2019;7:68. doi:10.1186/s40635-019-0278-6
  29. Takakura W, Chang C, Hosseini A, et al. S0462 The Vital Gut Microbe: The Effect of Methane on the Host's Vital Sign. Official journal of the American College of Gastroenterology | ACG</em >. 2020;115:S232. doi:10.14309/01.ajg.0000703896.97051.4f
  30. Dordević D, Jančíková S, Vítězová M, Kushkevych I. Hydrogen sulfide toxicity in the gut environment: Meta analysis of sulfate-reducing and lactic acid bacteria in inflammatory processes. Journal of Advanced Research. 2021;27:55-69. doi:10.1016/j.jare.2020.03.003
  31. Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 2017;10(1):18-26. doi:10.1038/mi.2016.75
  32. Litvak Y, Byndloss MX, Tsolis RM, Bäumler AJ. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Current Opinion in Microbiology. 2017;39:1-6. doi:10.1016/j.mib.2017.07.003
  33. Tiffany CR, Bäumler AJ. Dysbiosis: from fiction to function. American Journal of Physiology-Gastrointestinal and Liver Physiology</em >. 2019;317(5):G602-G608. doi:10.1152/ajpgi.00230.2019
  34. Diet, microorganisms and their metabolites, and colon cancer | Nature Reviews Gastroenterology & Hepatology. Accessed October 26, 2022. https://www.nature.com/articles/nrgastro.2016.165
  35. Berstad A, Raa J, Midtvedt T, Valeur J. Probiotic lactic acid bacteria – the fledgling cuckoos of the gut? Microb Ecol Health Dis. 2016;27:10.3402/mehd.v27.31557. doi:10.3402/mehd.v27.31557
  36. Di Cerbo A, Palmieri B, Aponte M, Morales-Medina JC, Iannitti T. Mechanisms and therapeutic effectiveness of lactobacilli. J Clin Pathol. 2016;69(3):187-203. doi:10.1136/jclinpath-2015-202976
  37. Sarkar A, Mandal S. Bifidobacteria—Insight into clinical outcomes and mechanisms of its probiotic action. Microbiological Research. 2016;192:159-171. doi:10.1016/j.micres.2016.07.001
  38. Alhaji Yusuf M, Tengku Abdul Hamid TH. Lactic acid bacteria: bacteriocin producer: a mini review. IOSR Journal of Pharmacy. 2013;3(4):2319-4219.
  39. Louis P, Duncan SH, Sheridan PO, Walker AW, Flint HJ. Microbial lactate utilisation and the stability of the gut microbiome. Gut Microbiome. 2022;3:e3. doi:10.1017/gmb.2022.3
  40. Martino C, Dilmore AH, Burcham ZM, Metcalf JL, Jeste D, Knight R. Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol. Published online July 29, 2022:1-14. doi:10.1038/s41579-022-00768-z
  41. Microbial Ecology in Health and Disease. Taylor & Francis. Accessed November 19, 2022. https://www.tandfonline.com/journals/zmeh20
  42. Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69(12):2232-2243. doi:10.1136/gutjnl-2020-322260
  43. Chakaroun RM, Massier L, Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients. 2020;12(4):1082. doi:10.3390/nu12041082
  44. Van Herreweghen F, De Paepe K, Roume H, Kerckhof FM, Van de Wiele T. Mucin degradation niche as a driver of microbiome composition and Akkermansia muciniphila abundance in a dynamic gut model is donor independent. FEMS Microbiology Ecology. 2018;94(12):fiy186. doi:10.1093/femsec/fiy186
  45. Schwabkey ZI, Wiesnoski DH, Chang CC, et al. Diet-derived metabolites and mucus link the gut microbiome to fever after cytotoxic cancer treatment. Science Translational Medicine. 2022;14(671):eabo3445. doi:10.1126/scitranslmed.abo3445
  46. O'Donnell JA, Zheng T, Meric G, Marques FZ. The gut microbiome and hypertension. Nat Rev Nephrol. Published online January 11, 2023:1-15. doi:10.1038/s41581-022-00654-0
  47. Gao S, Sun R, Singh R, et al. The role of gut microbial beta-glucuronidases (gmGUS) in drug disposition and development. Drug Discov Today. 2022;27(10):103316. doi:10.1016/j.drudis.2022.07.001
  48. Dashnyam P, Mudududdla R, Hsieh TJ, et al. β-Glucuronidases of opportunistic bacteria are the major contributors to xenobiotic-induced toxicity in the gut. Sci Rep. 2018;8(1):16372. doi:10.1038/s41598-018-34678-z
  49. Candeliere F, Raimondi S, Ranieri R, et al. β-Glucuronidase Pattern Predicted From Gut Metagenomes Indicates Potentially Diversified Pharmacomicrobiomics. Front Microbiol. 2022;13:826994. doi:10.3389/fmicb.2022.826994
  50. Bhatt AP, Pellock SJ, Biernat KA, et al. Targeted inhibition of gut bacterial β-glucuronidase activity enhances anticancer drug efficacy. Proc Natl Acad Sci U S A. 2020;117(13):7374-7381. doi:10.1073/pnas.1918095117
  51. Kwa M, Plottel CS, Blaser MJ, Adams S. The Intestinal Microbiome and Estrogen Receptor–Positive Female Breast Cancer. J Natl Cancer Inst. 2016;108(8):djw029. doi:10.1093/jnci/djw029
  52. Parida S, Sharma D. The Microbiome–Estrogen Connection and Breast Cancer Risk. Cells. 2019;8(12):1642. doi:10.3390/cells8121642
  53. Arnone AA, Cook KL. Gut and Breast Microbiota as Endocrine Regulators of Hormone Receptor-positive Breast Cancer Risk and Therapy Response. Endocrinology. 2023;164(1):bqac177. doi:10.1210/endocr/bqac177
  54. Fatima A, Khan MS, Ahmad MW. Therapeutic Potential of Equol: A Comprehensive Review. Current Pharmaceutical Design. 26(45):5837-5843.
  55. Mayo B, Vázquez L, Flórez AB. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients. 2019;11(9):2231. doi:10.3390/nu11092231
  56. Rath S, Rud T, Pieper DH, Vital M. Potential TMA-Producing Bacteria Are Ubiquitously Found in Mammalia. Frontiers in Microbiology. 2020;10. Accessed November 2, 2022. https://www.frontiersin.org/articles/10.3389/fmicb.2019.02966
  57. Tang WHW, Bäckhed F, Landmesser U, Hazen SL. Intestinal Microbiota in Cardiovascular Health and Disease: JACC State-of-the-Art Review. Journal of the American College of Cardiology. 2019;73(16):2089-2105. doi:10.1016/j.jacc.2019.03.024
  58. Fromentin S, Forslund SK, Chechi K, et al. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat Med. 2022;28(2):303-314. doi:10.1038/s41591-022-01688-4
  59. Rath S, Heidrich B, Pieper DH, Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 2017;5(1):54. doi:10.1186/s40168-017-0271-9
  60. Mei Z, Chen GC, Wang Z, et al. Dietary factors, gut microbiota, and serum trimethylamine-N-oxide associated with cardiovascular disease in the Hispanic Community Health Study/Study of Latinos. Am J Clin Nutr. 2021;113(6):1503-1514. doi:10.1093/ajcn/nqab001
  61. Siener R, Bangen U, Sidhu H, Hönow R, Unruh G von, Hesse A. The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney International. 2013;83(6):1144-1149. doi:10.1038/ki.2013.104
  62. Daniel SL, Moradi L, Paiste H, et al. Forty Years of Oxalobacter formigenes, a Gutsy Oxalate-Degrading Specialist. Appl Environ Microbiol. 87(18):e00544-21. doi:10.1128/AEM.00544-21

Hefen (& Parasiten)

  1. Chabé M, Lokmer A, Ségurel L. Gut Protozoa: Friends or Foes of the Human Gut Microbiota? Trends in Parasitology. 2017;33(12):925-934. doi:10.1016/j.pt.2017.08.005
  2. Pérez JC. Fungi of the human gut microbiota: Roles and significance. International Journal of Medical Microbiology. 2021;311(3):151490. doi:10.1016/j.ijmm.2021.151490
  3. Doron I, Mesko M, Li XV, et al. Mycobiota-induced IgA antibodies regulate fungal commensalism in the gut and are dysregulated in Crohn's disease. Nat Microbiol. 2021;6(12):1493-1504. doi:10.1038/s41564-021-00983-z
  4. Ost KS, O'Meara TR, Stephens WZ, et al. Adaptive immunity induces mutualism between commensal eukaryotes. Nature. 2021;596(7870):114-118. doi:10.1038/s41586-021-03722-w
  5. Auchtung TA, Fofanova TY, Stewart CJ, et al. Investigating Colonization of the Healthy Adult Gastrointestinal Tract by Fungi. mSphere. 2018;3(2):e00092-18. doi:10.1128/mSphere.00092-18
  6. Mirhakkak MH, Schäuble S, Klassert TE, et al. Metabolic modeling predicts specific gut bacteria as key determinants for Candida albicans colonization levels. ISME J. 2021;15(5):1257-1270. doi:10.1038/s41396-020- 00848-z
  7. Fiers WD, Gao IH, Iliev ID. Gut mycobiota under scrutiny: fungal symbionts or environmental transients? Current Opinion in Microbiology. 2019;50:79-86. doi:10.1016/j.mib.2019.09.010
  8. Zhang F, Aschenbrenner D, Yoo JY, Zuo T. The gut mycobiome in health, disease, and clinical applications in association with the gut bacterial microbiome assembly. The Lancet Microbe. 2022;3(12):e969-e983. doi:10.1016/S2666-5247(22)00203-8
  9. Belvoncikova P, Splichalova P, Videnska P, Gardlik R. The Human Mycobiome: Colonization, Composition and the Role in Health and Disease. Journal of Fungi. 2022;8(10):1046. doi:10.3390/jof8101046
  10. Bacher P, Hohnstein T, Beerbaum E, et al. Human Anti-fungal Th17 Immunity and Pathology Rely on Cross Reactivity against Candida albicans. Cell. 2019;176(6):1340-1355.e15. doi:10.1016/j.cell.2019.01.041
  11. Willis AM, Coulter WA, Sullivan DJ, et al. Isolation of C. dubliniensis from insulin-using diabetes mellitus patients. Journal of Oral Pathology & Medicine. 2000;29(2):86-90. doi:10.1034/j.1600-0714.2000.290206.x
  12. Boutin RC, Petersen C, Woodward SE, et al. Bacterial–fungal interactions in the neonatal gut influence asthma outcomes later in life. eLife. 10:e67740. doi:10.7554/eLife.67740
  13. Lewis JD, Chen EZ, Baldassano RN, et al. Inflammation, Antibiotics, and Diet as Environmental Stressors of the Gut Microbiome in Pediatric Crohn's Disease. Cell Host Microbe. 2015;18(4):489-500. doi:10.1016/j.chom.2015.09.008
  14. Zhai B, Ola M, Rolling T, et al. High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med. 2020;26(1):59-64. doi:10.1038/s41591-019-0709-7
  15. Rolling T, Zhai B, Gjonbalaj M, et al. Haematopoietic cell transplantation outcomes are linked to intestinal mycobiota dynamics and an expansion of Candida parapsilosis complex species. Nat Microbiol. 2021;6(12):1505- 1515. doi:10.1038/s41564-021-00989-7
  16. Li Q, Wang C, Tang C, He Q, Li N, Li J. Dysbiosis of Gut Fungal Microbiota is Associated With Mucosal Inflammation in Crohn's Disease. Journal of Clinical Gastroenterology. 2014;48(6):513. doi:10.1097/MCG.0000000000000035
  17. Zhang L, Zhan H, Xu W, Yan S, Ng SC. The role of gut mycobiome in health and diseases. Therap Adv Gastroenterol. 2021;14:17562848211047130. doi:10.1177/17562848211047130
  18. Suerbaum S, et al. Medizinische Mikrobiologie Und Infektiologie.
  19. Hof H, Schlüter D. Duale Reihe Medizinische Mikrobiologie
  20. Sharma A, et al. Medical Microbiology. De Gruyter; 2022. doi:10.1515/9783110517736
  21. Stark D, Barratt J, Chan D, Ellis JT. Dientamoeba fragilis, the Neglected Trichomonad of the Human Bowel. Clin Microbiol Rev. 2016;29(3):553-580. doi:10.1128/CMR.00076-15</a >

Biochemische Parameter

  1. Praktische Labordiagnostik von Harald Renz
  2. Grundwissen Immunologie - Christine Schütt, Barbara Bröker
  3. Campos-Rodríguez R, Godínez-Victoria M, Abarca-Rojano E, et al. Stress modulates intestinal secretory immunoglobulin A. Front Integr Neurosci. 2013;7:86. doi:10.3389/fnint.2013.00086
  4. XU Z, JIANG W, HUANG W, LIN Y, CHAN FKL, NG SC. Gut microbiota in patients with obesity and metabolic disorders — a systematic review. Genes & Nutrition. 2022;17(1):2. doi:10.1186/s12263-021-00703-6
  5. Zeng MY, Inohara N, Nuñez G. Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol. 2017;10(1):18-26. doi:10.1038/mi.2016.75
  6. Litvak Y, Byndloss MX, Tsolis RM, Bäumler AJ. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Current Opinion in Microbiology. 2017;39:1-6. doi:10.1016/j.mib.2017.07.003
  7. O'Donnell JA, Zheng T, Meric G, Marques FZ. The gut microbiome and hypertension. Nat Rev Nephrol. Published online January 11, 2023:1-15. doi:10.1038/s41581-022-00654-0
  8. Johnson L. Chapter Five - Screening for gastrointestinal and pancreatic diseases. In: Makowski GS, ed. Advances in Clinical Chemistry. Vol 108. Elsevier; 2022:129-153. doi:10.1016/bs.acc.2021.09.008
  9. Strygler B, Nicar MJ, Santangelo WC, Porter JL, Fordtran JS. α1-antitrypsin excretion in stool in normal subjects and in patients with gastrointestinal disorders. Gastroenterology. 1990;99(5):1380-1387. doi:10.5555/uri:pii:0016508590911653
  10. Vanuytsel T, Vermeire S, Cleynen I. The role of Haptoglobin and its related protein, Zonulin, in inflammatory bowel disease. Tissue Barriers. 2013;1(5):e27321. doi:10.4161/tisb.27321

Ernährung

  1. Eisenstein M. The hunt for a healthy microbiome. Nature. 2020;577(7792):S6-S8. doi:10.1038/d41586-020-00193-3
  2. Vangay P, Johnson AJ, Ward TL, et al. US Immigration Westernizes the Human Gut Microbiome. Cell. 2018;175(4):962- 972.e10. doi:10.1016/j.cell.2018.10.029
Bg Blockcol F3f5f9